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1.1 Introduction

The study of electromagnetic (EM) interactions with materials has a long and rich
history dating back to Fresnel, Maxwell, Rayleigh, and many others [1–4]. Over these
nearly 200 years, EM material development and applications have blossomed dramat-
ically, culminating in the recent developments of metamaterials [5–16]. The prefix
“meta” is a Greek preposition meaning (among other things) “beyond”. Metamateri-
als are novel, synthetic materials engineered to achieve unique properties not normally
found in nature, i.e., materials beyond those occurring naturally. Metamaterials are of-
ten realized by arranging a set of small scatterers in a regular array throughout a region
of space (Fig. 1.1), thus obtaining some desirable bulk behavior. Artificial dielectrics
were early examples of these engineered materials. However, the term metamaterial is
a newer designation that includes, but is not limited to, artificial dielectrics. Nor does
the term metamaterial refer to classical periodic structures, such as what are now called
photonic bandgap (PBG) structures or frequency-selective surfaces (FSSs). The term
metamaterial refers to a material or structure with more exotic properties than artifi-
cial dielectrics, but which can still be described by bulk material parameters as natural
materials can. One particular class of metamaterial that is being studied extensively
consists of the so-called “double-negative” (DNG) materials [17–32] (also known as
negative-index materials (NIM), backward-wave (BW) media, or left-handed mate-
rials (LHM)). Such materials have the property that their effective permittivity and
effective permeability are simultaneously negative in a given frequency band. An-
other property not normally found in nature that can be achieved with metamaterials
is that of near-zero refractive index. In this type of material, either the permittivity or
permeability is designed to have its real part close to zero. Materials with unique prop-
erties such as these have a wide range of potential applications in electromagnetics at
frequencies ranging from the low microwaves to optical, including shielding, low-
reflection materials, novel substrates, antennas, electronic switches, devices, “perfect
lenses,” resonators, and of course cloaking, to name only a few.
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2 Dielectric Metamaterials

Figure 1.1 Three examples of metamaterials: (A) array of split-rings (Courtesy of Dr. N. Orloff of NIST
and Prof. S.M. Anlage of the University of Maryland), (B) array of spherical particles, and (C) array
of arbitrarily shaped dielectric inclusions (from Shutterstock, https://www.shutterstock.com/image-photo/
example-metamaterials-physics-laboratory-1074505616?src=library).

Initially, the pursuit of cloaking was the “Holy Grail” of these metamaterials and
received much attention in the early years of metamaterial research. Cloaking (or the
ability to “hide” an object) has appeared throughout the years in popular literature and,
depending on your generation, examples include Tolkien’s ring, Romulan warships,
and Harry Potter’s cloak. However, due to physical limitations (no broadband lossless
metamaterials are available) cloaking materials have not come to practical fruition. So
researchers have turned their attention to other exotic material properties. Properties
that are of great interest for a wide range of applications include controllability (that
is, a material whose properties can easily be changed over a wide range of frequen-
cies), designs for a very narrow bandwidth, and engineering materials with tailored
unnatural permittivities and permeabilities, e.g., materials with near-zero indices.

The concept of metamaterials has been extended to two-dimensional arrays (re-
ferred to as metasurfaces) [33,34]; see Figs. 1.1C and 1.2. These types of metas-
tructures have an advantage over three-dimensional metamaterials because they take
up less physical space and have the potential for lower losses. Metasurfaces have
become a popular alternative to metamaterials. Applications of metasurfaces at fre-
quencies from low microwave to optical have attracted great interest in recent years.
These applications in electromagnetics include controllable “smart” surfaces, minia-
turized cavity resonators, novel waveguiding structures, angular-independent surfaces,
absorbers, biomedical devices, terahertz switches, and fluid-tunable frequency-agile
materials, to name only a few.

https://www.shutterstock.com/image-photo/example-metamaterials-physics-laboratory-1074505616?src=library
https://www.shutterstock.com/image-photo/example-metamaterials-physics-laboratory-1074505616?src=library
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Figure 1.2 Three examples of metasurfaces: (A) array of metallic scatterers (from C.L. Holloway,
E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, An overview of the theory and applications
of metasurfaces: the two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag. 54 (2)
(April 2012) 10–35, © 2012 IEEE), (B) array of magneto-dielectric spherical particles (from C.L. Holloway,
E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, An overview of the theory and applications of
metasurfaces: the two-dimensional equivalents of metamaterials, IEEE Antennas Propag. Mag. 54 (2) (April
2012) 10–35, © 2012 IEEE), and (C) array of square apertures (from C.L. Holloway, E.F. Kuester, Gener-
alized sheet transition conditions (GSTCs) for a metascreen, IEEE Trans. Antennas Propag. 66 (5) (2018)
2414–2427, © 2018 IEEE).

The metasurface concept can be extended even further by use of only a linear unit
cell, rather than a surface element, as the building block, or even only a single sub-
wavelength resonant element for some desired effect or behavior. In this chapter, we
will discuss different aspects of various electromagnetic metastructures. We will pro-
vide a historical perspective, a study of the concepts that underly their behavior, a
discussion of the characterization of these metastructures, and a discussion on how
these different metastructures behave at different length scales (that is, periodicity and
inclusion size relative to the wavelength of interest).
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1.2 Electromagnetic behavior of ordinary materials

Before we discuss the behavior of engineered materials and how this behavior changes
at different wavelength scales, we need to first discuss electromagnetic material prop-
erties, in general. We start by revisiting how the permittivity and permeability of a
medium arise. Permittivity is due to the induced electric-dipole response of a large
number of small particles [35, pp. 159–162]. Classically, these particles have been re-
garded as atoms or molecules, but in the past 70 years so-called artificial dielectrics
have been developed whose “atoms” are small metal or dielectric objects, of dimen-
sions large compared to atomic size, but still small compared to the wavelength of
the electromagnetic waves acting in the “host” medium in which these inclusions are
embedded [2,3,36–46]. In either case, the induced dipole moments are related by the
electric polarizabilities of the scatterers to the electric field acting on each one. The
dipole moments are then volume-averaged into a polarization density P, and the elec-
tric field is likewise averaged into a macroscopic or effective field E. From these, the
electric displacement vector D and permittivity ε are defined by:

D = ε0E + P = εE ,

where ε is related to the electric polarizability densities of the scatterers in space.
Permeability originates in an analogous way from the volume density M of mag-

netic dipole moments arising from the angular momentum of charge due to particle
spin and orbital movement, and is related to the magnetic polarizabilities of the scat-
terers. The effective fields H and B are then related to each other by the expression:

B = μ0 (H + M) = μH ,

where μ is related to the magnetic polarizability densities of the scatterers in space.1

We will denote the relative permittivities and permeabilities by a subscript r , and
express ε and μ in terms of their real and imaginary parts by: ε = ε0(ε

′
r −jε′′

r ) and μ =
μ0(μ

′
r − jμ′′

r ) [Note that throughout this chapter the time dependence is ejωt ]. In this
description, details of the field behavior on the scale of scatterer size and separation
are lost, and indeed are often not of practical interest.

The problem of effective-medium theory and modeling the electromagnetic re-
sponse of inclusions embedded in a medium is known as the “classical composite
medium” and has a long history [2,3,36–46]. In recent years, artificial materials
formed from periodic arrays of unusually-shaped conducting scatterers have been de-
signed so as to have negative μ′

r and ε′
r (i.e., μ′

r < 0 and ε′
r < 0) and were given the

name metamaterials [5–32]. Sufficiently deep within such a material, and if the fre-
quency is low enough for scatterer spacing to be small compared to a wavelength, the
medium appears to the average field as a continuous effective medium with some bulk
effective material property. On the other hand, near the interface of such a material

1 Scatterers of complex geometry can result in an anisotropic medium, for which ε and μ are tensors, or
even in a bianisotropic medium, for which D and H are each affected by both E and B. We limit our
attention in this paper to isotropic, non-bianisotropic composite materials.



Electromagnetic metamaterials and metasurfaces 5

with another medium, the fields acting on the scatterers that make up the material are
expected to be differnet from deep within the bulk material, and the magnitude of this
effect is uncertain [47].

For passive materials, μ′′
r ≥ 0 and ε′′

r ≥ 0. The real parts of the material parame-
ters (i.e., μ′

r and ε′
r ) for many common materials are positive, but there are exceptions.

We will see that negative permittivity and permeability are possible in composite/engi-
neered materials. However, negative permittivity and permeability can occur at a more
fundamental level. For example, in plasmas the combination of ordinary displacement
current density with electron-convection current density can yield a net negative real
part of the permittivity for sufficiently low frequencies [35, pp. 309–319]. Indeed,
Rotman [42] has shown how an artificial dielectric can reproduce such a negative per-
mittivity and serve as a model for a plasma. A transmission-line equivalent circuit
for describing a plasma is discussed in [48]. Negative permittivity also appears near a
resonance frequency in Lorentz’s theory of dispersion (see [4], for example).

When one (but not both) of ε′
r or μ′

r is negative, plane waves decay exponentially,
like modes below cutoff in a waveguide. However, when both ε′

r and μ′
r are negative,

waves can still propagate in such a medium since the product με remains positive. In
this case, we have a “backward wave”, for which the phase of the wave moves in the
direction opposite from that of the energy flow. For lossless media, this means that the
phase velocity and group velocity have opposite signs.

1.3 Metamaterials and periodic composites: length-scale
effects

Let us now discuss the global behavior of a periodic composite material. Depend-
ing on the wavelength and the periodicity of the inclusions that make up a composite
material, the composite may or may not behave as an effective medium. Metamateri-
als are commonly engineered by designing specifically shaped scatterers/inclusions or
other objects, placed throughout a volume to achieve a desirable bulk behavior of the
materials. In these types of engineered materials the scatterers can be of various length
scales: the dimensions of the scatterers can range from relatively large to nanometer
size and even smaller, depending on the frequencies of interest. In some of these sit-
uations, the scatterers and the spacing between them can become comparable to the
wavelength of the electromagnetic waves [specifically, the wavelength in the “host”
medium in which these inclusions (scatterers) are embedded, or the wavelength in the
inclusions]. In natural materials, where the inclusions are atoms or molecules, this
does not happen until frequencies reach the x-ray region. But with artificial materi-
als, this can happen at much lower frequencies and one has to revisit the notion of
electromagnetic material properties. In fact, the electromagnetic field interaction with
these types of engineered materials falls into three separate regions of behavior (see
Fig. 1.3), with distinctive behaviors in each region. It is important to be aware of this
and to understand the behavior in each region when either performing measurements
or analyzing metamaterials at different length scales and/or frequencies, as will be
described in the following subsections.
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Figure 1.3 Three characteristic regions of composite materials or metamaterials.

1.3.1 Effective media: classical mixing theory

The first region in Fig. 1.3 corresponds to that of quasi-static behavior. This implies
low frequencies—or specifically, frequencies where the wavelength is much larger
than the lattice constant of the structure, that is, compared to the period of the scatter-
ers that compose the composite medium, as well as the size of the inclusions. These
scatterers could correspond to induced or permanent dipole moments, as is the case for
atoms or molecules for classical materials, or could be generic in shape and placed in a
host matrix to obtain an artificial composite material designed to have some desirable
property. Using asymptotic techniques it is possible to show that the electromagnetic
field in this low frequency limit sees the composite material as an equivalent effective
medium with homogeneous material properties. The effective material properties are
obtained from quasi-static field solutions of the periodic structure [49,50]. The basic
result is that the effective permittivity is obtained by taking the ratio of some aver-
aged D-field to an averaged E-field (as discussed above). The effective permeability is
likewise obtained by taking the ratio of an averaged B-field to an averaged H-field.

The problem of effective-medium theory and modeling of electromagnetic re-
sponse to an array of inclusions embedded in a host material has a long history going
back to Maxwell, Rayleigh, as well as Poisson, Clausius and Mossotti before that.
Much work has been done since then to compute the effective properties of homoge-
neous composite materials. A survey of this work can be found in [36,37,41]. The
formulas for the effective properties given throughout the literature take on many
forms. These range from simple bounds [41,51–53] to elaborate closed-form approx-
imate formulas [36–38,41,43–45]. Note that these types of mixing formulas are only
valid when the period of the structure is small in comparison to the wavelength of the
electromagnetic wave. The reason for this is discussed in Section 1.3.2.

Let us look at a composite structure composed of particles embedded in a host
matrix (shown in Fig. 1.4 for the case of spherical particles) in order to illustrate the
implications of these classical mixing formulas (that is, the static limit). The Hashin–
Shtrikman (HS) upper (εU

HS) and lower (εL
HS) bounds [51] are the best obtainable

bounds using only the material parameters ε1 (host matrix material), ε2 (the material
of the inclusion), and the fill factor g (volume fraction of space occupied by the bulk
inclusion ε2). They apply to composites based on inclusions of arbitrary shape. For a
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Figure 1.4 Composite structure containing spherical particles: (A) three-dimensional view and (B) cut-
away view (from C.L. Holloway, E.F. Kuester, J. Baker-Jarvis, P. Kabos, A double negative (DNG) com-
posite medium composed of magneto-dielectric spherical particles embedded in a matrix, IEEE Trans.
Antennas Propag. 51 (10) (2003) 2596–2603, © 2003 IEEE).

three-dimensional composite material in which ε2 > ε1, the bounds are defined as

εL
HS ≡ ε1 + g

1
ε2−ε1

+ 1−g
3ε1

, εU
HS ≡ ε2 + 1 − g

1
ε1−ε2

+ g
3ε2

. (1.1)

If ε2 < ε1, the lower bound in Eq. (1.1) becomes an upper bound, and the upper bound
becomes the lower bound (see [51] for details). Note that the expressions for these
bounds need to be modified for other types of composite materials [41,50]. The vari-
ation of the effective permittivity (εeff) based on the expressions given in Eq. (1.1) is
shown as a function of g ranging from 0 to 1 in Fig. 1.5 for two different values of the
inclusion permittivity. Although results in this figure are shown for g approaching 1,
for specific inclusion shapes, the limit g = 1 may not be achievable. For example, in
the array of spheres, the spheres touch each other when g = π/6, and larger values of
g have no meaning in this case.

For the composite shown in Fig. 1.4, Lewin [38] made a notable study of the ef-
fective permittivity and permeability μe and εe, by incorporating the solution of a
boundary-value problem for scattering by a sphere into a unit cell, and then assuming
that the medium is composed of a large number of these cells. For an array of lossless
magneto-dielectric spheres, the relative effective μ′

re and ε′
re were found to be

ε′
re = εeff = εr1

(
1 + 3g

F(θ)+2be

F (θ)−be
− g

)
(1.2)

and

μ′
re = μeff = μr1

(
1 + 3g

F(θ)+2bm

F(θ)−bm
− g

)
. (1.3)

In these expressions, μr1 and εr1 are the relative permeability and permittivity of the
matrix (host) medium, μr2 and εr2 are the relative permeability and permittivity of the
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Figure 1.5 Effective properties of a spherical particle composite.

inclusions where

be = ε1

ε2
, bm = μ1

μ2
. (1.4)

The volume fraction g of the spherical inclusions is given by

g = 4πa3

3p3
, (1.5)

where a is the particle radius and p is the particle spacing. The function F(θ) is

F(θ) = 2 (sin θ − θ cos θ)

(θ2 − 1) sin θ + θ cos θ
, (1.6)

where

θ = k0a

√
ε′
r2μ

′
r2 (1.7)

and the free-space wavenumber is k0 = 2π/λ, λ being the free-space wavelength. In
the static limit θ → 0 (which implies no resonances in the inclusions), F(θ) → 1,
and Lewin’s formulas reduce to the Hashin–Shtrikman (HS) lower bounds, as can be
observed in Fig. 1.5. Note that the results from Lewin’s formula are only plotted to
g = π/6, for the reason stated in the previous paragraph.

These results are typical of any mixing formula that one might choose to use for
any type of composite material, in that a monotonic change takes place from the bulk
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properties of the host towards the bulk properties of inclusion as the filling factor g

increases from 0. Keep in mind that some mixing formulas may be more accurate
than others depending on the geometry of the composite [36,37,41,49,50], but in gen-
eral this trend is universal. This will be seen to be quite different from what occurs
in the resonant effective material properties region (the second region in Fig. 1.3),
which we will discuss in subsection 1.3.3. Notice also that there is no frequency de-
pendence in the mixing formulas that we have discussed so far. The formulas are
based on a quasi-static approximation, and the only frequency dependence that could
occur would be because the bulk material properties of the matrix or inclusions are
frequency-dependent. This is not the case in the second region, where resonant effects
of the scatterers are important. This also will be discussed in subsection 1.3.3.

1.3.2 Floquet–Bloch modes: frequency selective surfaces and
photonic band gap structures

Before we discuss Region 2 in Fig. 1.3, let us examine Region 3. In this region, the
wavelength approaches the period of a periodic structure, and the fields no longer
‘see’ the composite as an effective medium. At these frequencies, a more complicated
field behavior exists and more elaborate full-wave modeling techniques to analyze the
EM field interaction with the composite periodic structures must be used. The clas-
sical approach that is used to analyze periodic structures is the Floquet–Bloch-mode
approach [54–56]. To understand this method, we first review how fields in a homo-
geneous medium are expressed.

A plane wave is a solution of Maxwell’s equations in a uniform, source-free region
of space characterized by the material constants μ and ε. A typical component of (say)
the electric field is given by

E = E0e
−j (kxx+kyy+kzz) , (1.8)

where E0 is a constant amplitude, and the constants kx , ky and kz are components
of a wave-vector indicating the direction of propagation of the wave. All of the field
components (E and H) have the same (x, y, z) dependence as in (1.8), but with dif-
ferent amplitudes. If the field is not identically zero, these amplitudes are related to
each other by constraints imposed by Maxwell’s equations; in addition, at a given
frequency ω, the components of the wave-vector must obey

k2 = ω2με = k2
x + k2

y + k2
z . (1.9)

More general fields are representable by a superposition of plane-wave fields, ei-
ther a sum or an integral over suitable sets of possible values of kx , ky , and kz =√

k2 − k2
x − k2

y . Those plane waves for which k2
x + k2

y > k2 are evanescent in the

z-direction and do not contribute significantly in the far field when z is large enough.
For a three-dimensional periodic medium, when μ and ε are periodic functions of

x, y, and z, with periods px , py , and pz, respectively, a Floquet–Bloch mode for a
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component of the E-field has the form

E = Ep(x, y, z)e−j (kxx+kyy+kzz) , (1.10)

where Ep is a function periodic in x, y and z with the same periods as μ and ε. As
with the plane-wave solution, the constants kx , ky , and kz and the amplitude functions
Ep, etc., cannot take on arbitrary values, but are constrained by the requirement that
the field is nontrivial and obeys Maxwell’s equations. For given values of kx , ky , and
kz, this can happen only when the frequency ω is equal to one of a set of eigenfrequen-
cies ωr(kx, ky, kz). The relation between components of the wave-vector is then the
implicit equation ω = ωr(kx, ky, kz), which generalizes (1.9). The periodic function
Ep can be represented as a complex exponential Fourier series:

Ep(x, y, z) =
∞∑

l,m,n=−∞
Clmne

−j
(

2πlx
px

+ 2πmy
py

+ 2πnz
pz

)
(1.11)

or

E =
∞∑

l,m,n=−∞
Clmne

−j
(
kxlx+kymy+kznz

)
, (1.12)

where

kxl = kx + 2lπ

px

, kym = ky + 2mπ

py

, kzn = kz + 2nπ

pz

, (1.13)

and px,y,z are the lattice periods in the x, y, and z directions, respectively. The con-
stants Cl,n,m and eigenfrequencies ωr(kx, ky, kz) are determined by constraining the
field to obey Maxwell’s equations—this is usually done numerically.

Analogous to the plane-wave case, if k2
xl + k2

ym is large enough, the field will decay
in the z-direction, and such waves will not contribute in the far field. It turns out that,
for kpx , kpy , and kpz smaller than about π (where k is now a suitably-defined repre-
sentative wavenumber), only the lowest-order Floquet–Bloch mode (the one with the
smallest value of ωr = ω0) can propagate without attenuation. Put another way, if the
wavelength is large in comparison to the periods, only the lowest-order Floquet–Bloch
mode propagates. As the frequency increases, more of the higher-order modes begin to
propagate. For small periods and long wavelengths, the lowest-order Floquet–Bloch
mode represents (in some sense) the averaged fields propagating through the com-
posite periodic structure. These fields along with the eigenfrequency ω0 allow us to
determine an effective medium in terms of εe and μe.

The situation is quite different once the higher-order modes begin to propagate.
No longer do unique values of εe and μe fully determine the non-evanescent field,
and complicated interference effects among the Floquet–Bloch modes will arise. Cer-
tainly, important practical applications of these effects exist (Bragg scattering perhaps
foremost among them), but a simplified effective-medium description is no longer
possible. A field propagating through a composite sees the structure as an effective
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Figure 1.6 Infinitely-long metal wire grating in free space, where p is the period of the grating and D is
the wire diameter.

medium as long as the higher-order Floquet–Bloch modes do not propagate into it.
For a background medium of free space, the restriction on k0p as a function of the
plane-wave incidence angle φ for this to happen is

kop <
2π

1 − sinφ
.

Periodic structures used in such higher-frequency applications have been given var-
ious names throughout the literature. In recent years, high-frequency periodic surfaces
have been given the name frequency-selective surfaces (FSSs) [57,58] (historically
known as periodic gratings) and high-frequency three-dimensional periodic materials
have been given the name photonic band gap (PBG) materials [5,59]. FSS and PBG
structures have similar characteristics, that is, at certain frequencies the FSS and PBG
can block the propagation of an EM wave. The frequency bands where this blocking
effect occurs are referred to as stopbands. At other frequencies, the periodic structure
allows energy to propagate through the structure; these frequency bands are referred
to as passbands.

This can be readily seen by considering the infinitely-long metal wire grating
shown in Fig. 1.6. The transverse electric (TE) reflection and transmission coefficients
of this two-dimensional wire grating in free space are shown in Fig. 1.7. These results
were obtained with a finite-element numerical program. These quantities are a com-
plicated function of the lattice configuration (e.g., the period p and diameter D of the
wires). The lattice will severely attenuate the transmitted field at wavelengths that are
much larger than the lattice period p. In general, the attenuation of the fields due to
the lattice is monotonic and decreases with frequency up to the first resonance (i.e.,
the peak in the transmitted field). For example, Fig. 1.7A shows results for a lattice in
free space, where p = 7.62 cm and D = 1.91 cm, and Fig. 1.7B shows results for a
lattice in free space, where p = 15.24 cm and D = 5.08 cm.

At low frequencies, the lattice acts inductively and the transmitted field strength in-
creases with frequency to a maximum at the first resonance with the wavelength (i.e.,
λ ≈ p). It should be noted that the shape of the curves as well as the wavelength at the
first resonance are, in general, a function of the wire diameter as well as the period.
The first resonance occurs when λ ≈ p (and not λ/2 ≈ p), because the plane-wave
excitation causes currents to flow in the same direction on adjacent parallel conduct-
ing elements of the lattice that are aligned with the incident electric field. Since the
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Figure 1.7 TE reflection and transmission characteristics of a two-dimensional array of infinitely-long
metal wires: (A) p = 7.62 cm and D = 1.91 cm, (B) p = 15.24 cm and D = 5.08 cm. These results are for
normal incidence.

currents on two adjacent conductors are equal in magnitude and direction, there is a
null in the induced magnetic and electric fields halfway between the conductors which
is consistent with this mode. From these results, we see that there is a passband when
λ ≈ p. Similar types of results are seen for different types of periodic structures, that
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is, stopbands and passbands will develop in the structure (FSS and PBG structures;
see [5,57–59]).

These effects of constructive and destructive interference of the various modes as
the wave propagates through the composite, are what give rise to the unique charac-
teristics of FSS and PBS structures. It is important to note that such effects cannot
be represented or captured by an effective-media theory. These stopband and pass-
band effects of FSS and PBG structures are caused by resonances associated with the
periodicity of the structure. In Section 1.3.3 we see that resonances associated with
the scatterers themselves can cause interesting and unexpected effects in the effective
material properties of a composite.

1.3.3 Effective media: scatterer resonances

Resonant features of the scatterers (or inclusions) that compose an effective medium
provide us the power to engineer the medium’s permittivity and/or permeability in
order to achieve unique and interesting properties. Region 2 in Fig. 1.3 corresponds to
a region where the scatterers are designed in such a manner (either via their shape or
bulk material properties) such that the scatterers themselves can resonate. When this
occurs, so-called metamaterials can be realized.

When the scatterers are non-resonant, the real parts of the material parameters (i.e.,
μ′

r and ε′
r ) for the engineered materials are usually positive, but there are exceptions,

as discussed in Section 1.2. When the scatterers are resonant, negative permittivity
and permeability are possible in composite materials. Materials of this type are also
called “double” negative (DNG) media, negative-index materials, backward-wave me-
dia (BW), or left-handed materials. This kind of material is just one of many types of
metamaterials. Early investigators in the fledgling area of metamaterials attributed the
first study of such media to Veselago [12] in 1967, but Lamb [60] in 1904, Schuster
[61] in 1904, Pocklington [62] in 1905, Mandel’shtam [63,64] in 1945, Malyuzhinets
in 1951 [65] and Sivukhin in 1957 [66] had all previously discussed the properties of
wave propagation in backward-wave media. Some other historical (or “pre-historical”)
surveys have been given in [15,67–69]. More recently, many other authors [5–32] have
studied the properties and potential applications of DNG materials in detail. Also see
[70–76].

Much of the early work on DNG materials concentrated on metallic inclusions
[5–32]. An interesting question is: “Can the DNG material effect occur in a pure di-
electric or magneto-dielectric composite medium?” To address this question, we refer
back to the work of Lewin [38], in which he used Mie’s exact solution of the problem
of scattering by a material sphere to derive an expression for the effective properties
of an array of spherical particles embedded in a background matrix (although many
of his results had already been obtained, albeit in a much more cumbersome form, by
previous researchers [39,40]). Lewin’s work showed that when the size of the spheri-
cal scatterers is not small compared to a wavelength in the material of the scatterers
(but is small compared to a wavelength in the matrix material), μe and εe become
frequency-dependent. The expressions for the effective permittivity and permeability
are presented in Eqs. (1.2) and (1.3). The interesting parameter in these equations is
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Figure 1.8 εre and μre for an array of spheres with g = 0.5, ε′
r1 = μ′

r1 = 1, ε′
r2 = 40, and μ′

r2 = 200.
The dashed-dot lines represent the asymptotes for εre . From C.L. Holloway, E.F. Kuester, J. Baker-Jarvis,
P. Kabos, A double negative (DNG) composite medium composed of magneto-dielectric spherical particles
embedded in a matrix, IEEE Trans. Antennas Propag. 51 (10) (2003) 2596–2603, © 2003 IEEE.

the factor F(θ). In section 1.3.1, the quasi-static of F(θ) is emphasized. In that static
limit F(θ) → 1. From Eq. (1.6) and plots shown in [29], it is apparent that F(θ) has
a resonant behavior. The possibility of such a composite structure (a pure dielectric or
magneto-dielectric composite) having both negative effective permittivity and perme-
ability was first demonstrated in [29], where the conditions that must be met for the
effective permittivity and permeability to be negative were given.

In [29] it is shown that these conditions can be met with realistic bulk material
properties of the matrix and the spherical inclusions. For example, Fig. 1.8 shows
results for g = 0.5, ε′

r1 = μ′
r1 = 1, ε′

r2 = 40, and μ′
r2 = 200 as a function of k0 a

(where a is the radius of the spheres and k0 is the free-space wavenumber). Between
0 ≤ k0 a ≤ 0.1 there are two regions where both μ′

re and ε′
re become negative, pro-

ducing a negative-index material [29]. This negative-index behavior also occurs when
ε′
r1/ε

′
r2 = μ′

r1/μ
′
r2. Fig. 1.9 shows such a composite that has a bandwidth (bands

where permittivity and permeability are simultaneously negative) of 10 %. Fig. 1.10
shows results for the real and imaginary part of εre for an array of lossy spherical
particles. The results in this figure are for different values of the dielectric loss tangent
of the spherical particles, defined as tanδ = ε′′

r /ε′
r . Notice that, for this example, the

real part of the effective permittivity can still be negative for loss tangents as large as
0.04. However, for larger values of tanδ the resonance is damped out and the real part
of the effective permittivity remains positive. This shows that if the inclusion (i.e., the
spherical particle) becomes too lossy, DNG properties cannot be realized. While large
values of negative properties can be attained near resonance as shown in Fig. 1.10A,
working too near these resonances has an adverse feature. The imaginary part of εeff

shown in Fig. 1.10B illustrates an important aspect of using metamaterials too close to
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Figure 1.9 εre and μre for an array of spheres with g = 0.5, ε′
r1 = μ′

r1 = 1, ε′
r2 = 20, and μ′

r2 = 20.
The dashed-dot line represents the asymptote. Notice that εre and μre are identical. From C.L. Hol-
loway, E.F. Kuester, J. Baker-Jarvis, P. Kabos, A double negative (DNG) composite medium composed
of magneto-dielectric spherical particles embedded in a matrix, IEEE Trans. Antennas Propag. 51 (10)
(2003) 2596–2603, © 2003 IEEE.

a resonance, in that losses can be very large near the resonance. As a result, researchers
have been investigating and designing metamaterials away from these resonances. Tai-
loring materials to a desired value and near-zero index materials are two examples of
metamaterial applications for frequencies away from resonance.

Once it was demonstrated in [29] that metamaterials composed of dielectric spheri-
cal inclusions were possible, other dielectric and magneto-dielectric inclusions started
appearing as a means to develop DNG materials and other desirable properties. This
includes layered-spherical particles, arrays of different sized spheres, cylindrical and
cubic inclusions, as well as other geometries [30,77–94].

The negative material properties are a result of the resonances associated with the
scatterers that make up the composite material. Therefore, it should not be a sur-
prise that any scatterer that can resonate can be used to obtain the DNG effect. In
fact, the Lewin approach can be readily extended to other geometries and to other
types of inclusions. Khizhniak wrote a series of papers [43–45] in which he gener-
alized Lewin’s model and presented expressions for the effective material property
tensors of an artificial material formed by an array of scatterers with arbitrary ge-
ometric shapes. Khizhniak presents expressions for the effective material properties
that have the same functional behavior as Lewin’s and does indeed suggest that neg-
ative material properties can be obtained via arbitrarily shaped inclusions. Recently,
several papers have studied the problem of designing engineered artificial materials
with negative μ′

r and ε′
r formed from periodic arrays of unusually-shaped conducting

scatterers, in particular, split metal rings and posts [5–28,31,32,95]. These structures
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Figure 1.10 Array of lossy spherical particles: εre and μre for g = 0.5, ε′
r1 = μ′

r1 = 1, ε′
r2 = 50, and

μ′
r2 = 50: (A) real part for εre (from C.L. Holloway, E.F. Kuester, J. Baker-Jarvis, P. Kabos, A double neg-

ative (DNG) composite medium composed of magneto-dielectric spherical particles embedded in a matrix,
IEEE Trans. Antennas Propag. 51 (10) (2003) 2596–2603, © 2003 IEEE) and (B) imaginary part for εre.

can be quite complicated to fabricate when compared to composites composed of the
magneto-dielectric inclusions.

Since these conducting scatterers are essentially resonant structures, the goal is to
design the microfabricated resonant circuits with desired effective properties in a unit
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cell. The design of such a structure was described in detail in [18]. The design is
based on the averaging of the magnetic field components along the axes of the unit
cell. Pendry averages the magnetic field in a cube of side a(= px = py = pz). For
each magnetic field component

< H >i= 1

a

∫
ri

H · dr, (1.14)

the induction field is averaged as

< B >i= 1

a2

∫
Si

B · dS , (1.15)

where i = x, y, or z, ri is a path from the origin to piai , ai is a unit vector in the
direction i, and Si is a square of side a in the plane i = 0. Following these averaging
definitions the effective permeability is then defined as

μeff(i) = < B >i

μ0 < H >i

. (1.16)

The effective permittivity is given by a similar expression

εeff(i) = < D >i

ε0 < E >i

. (1.17)

For negative permittivity or permeability, the equivalent circuit of the scatterer
circuit has to be resonant, which requires the introduction of capacitance into the
inductive system (or vice versa). Pendry introduced the capacitance through gaps in
coupled-ring resonators; details are discussed in [18]. Any microstructured microwave
resonant device, passive and/or active, can in principle be used to produce a desired
effective permeability in a periodic structure designed for double-negative applica-
tions [31].

The most convenient (and traditional) method to model metamaterials is with
effective-medium theory. It should be emphasized that the averaging (or homoge-
nization, or effective material model presentation) is valid only when the wavelength
is large compared to the lattice constant of the period cell. While period cell aver-
aging for the fields is the correct method for defining effective material properties,
most researchers in practice use an approach where they obtain the reflection and
transmission properties (either through measurements or numerical simulations) of
a metamaterial consisting of several layers (sometimes as few as three). The term
“layer” means a plane of scatterers with an associated thickness. When referring to
the layers of a metamaterial, the thickness is the period of the bulk materials in the
direction perpendicular to the plane of scatterers. Once the reflection and transmis-
sion properties are obtained, a Nicolson–Ross–Weir (NRW) approach [96,97] is used
to obtain the effective material properties of the bulk metamaterials. Note that the
standard NRW approach must be modified when negative material properties exist;
typically, the choice of the sign of a square-root is made unambiguous by ensuring
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positive power flow [98–102]. In general, for a bulk three-dimensional material (with
five layers or more) the approach results in unique effective material properties for the
metamaterials. However, there are conditions where these modified NRW approaches
fail; for details see [47,100,101], and [103]. This failure manifests itself in a depen-
dence of the extracted bulk electromagnetic material parameters on the thickness of
the sample used [98,104–106].

If used properly, the effective material approach can be a self-consistent and unique
method for characterizing a metamaterial. That is, no matter what thickness of the
same metamaterial is modeled (i.e., no matter the number of layers that compose the
metamaterial), the same values for the bulk effective material properties should be ob-
tained. By definition, a bulk property should not depend on the size (or shape, for that
matter) of the material sample. True bulk properties of a material should be retrievable
independent of the thickness of the sample chosen. Let us note here that some mod-
els of metasurfaces in terms of “bulk” properties are actually nonlocal–the obtained
permittivity and permeability are spatially dispersive, dependent on the wavenumber
of the wave propagating through the medium. This approach can address the issues
raised here to some extent, but is more complicated to use, in general, than a local
model. See, for example, [107].

Applications of DNG materials include, 1) shielding materials, 2) low-reflection
materials, 3) substrate materials, 4) antenna applications, 5) electronic switches, 6) res-
onators, 7) controllable surfaces, 8) cloaking, and 9) the so-called perfect lens. When
resonance is used to obtain some desired metamaterial behavior, a structure made from
passive materials must exhibit dispersion and therefore loss. This is required by the
Kramers–Kronig dispersion relations for the behavior to obey causality. As discussed
above, losses are high near resonances, and as such, one typically avoids this region.

We need to emphasize that Region 2 in Fig. 1.3 does not always occur. The scat-
terers need to be designed so that the scatterers’ resonances occur before the next
higher-order Floquet–Bloch mode can propagate. For example, in the case of spherical
particle inclusions, if the bulk properties and the radius of a spherical particle compos-
ite are too small, the scatterer resonances would be pushed toward the Floquet–Bloch-
mode region and a DNG material would not be realized. The scatterer resonance
region and the Floquet–Bloch-mode region would overlap and an effective-medium
model would not capture the behavior of the composite material. Furthermore, if the
size and shape of the inclusions (the dielectric structures used in [29,30,77–82] or
metallic inclusions in [5–28,31], and [32]) are not chosen properly, then the resonance
would be pushed into the Floquet–Bloch-mode region and once again DNG materials
would not be realized. Similar effects are also discussed in [122].

In summary, in the first two regions, the electromagnetic field behaves as if the
composite material is some type of effective medium. In region 1 (the classical mix-
ing theory region) the effective material properties have no frequency dependence
(except for that due to the constituent materials). In region 2 (the scatterer resonant
region) the material behaves as an effective medium and has the inherent frequency
dependence preserved in the effective material property model. In this region it is pos-
sible to achieve DNG materials and other desirable exotic material properties. Finally,
for the last region (region 3 in Fig. 1.3), the electromagnetic field interaction with
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the periodic structure is more complex. Scattering is the mechanism for the field be-
havior, and we can no longer think of the composite material simply as an effective
medium. When the wavelength approaches the lattice constant, higher-order Floquet–
Bloch modes must be considered. FSS and PBG are the predominant applications
found in this region.

1.4 Metasurfaces

Metamaterials are engineered by arranging a set of scatterers throughout a three-
dimensional region of space in a specific pattern so as to achieve some desirable bulk
behavior of the material. This concept can be extended by judiciously placing scat-
terers in a two-dimensional pattern at a surface or interface. Such a surface version
of a metamaterial has been given the name metasurface, and includes metafilms and
metascreens (both of these subcategories will be discussed below) as special cases [33,
34,108–110]. Metasurfaces have also been referred to in the literature as single-layer
metamaterials.

The simplicity and relative ease of fabrication of metasurfaces make them attractive
alternatives to three-dimensional (3D) metamaterials. In many applications, metasur-
faces can be used in place of metamaterials. Metasurfaces have the advantage of taking
up less physical space than do full 3D metamaterial structures; as a consequence they
can also offer the possibility of lower losses. The application of metasurfaces at fre-
quencies from microwave to optical has attracted great interest in recent years [33,34,
115–159]. In addition to the applications mentioned above for metamaterials, meta-
surfaces allow for controllable “smart” surfaces, miniaturized cavity resonators, novel
waveguiding structures, compact and wide-angle absorbers, impedance matching sur-
faces, biomedical devices, tailoring wave fronts, polarization conversion, antennas,
and high speed switching devices, to name only a few.

We will call any periodic two-dimensional structure whose thickness and period-
icity are small compared to a wavelength in the surrounding media a metasurface.
Within this general designation, we can identify two important subclasses. Metasur-
faces that have a “cermet” topology, which refers to an array of isolated (non-touching)
scatterers (Fig. 1.11), are called metafilms [33] and [108] (a term coined in [110]
for such surfaces). Metasurfaces with a “fishnet” structure (Fig. 1.12) are called
metascreens [33,109]. These metascreens are characterized by periodically-spaced
apertures in an otherwise relatively impenetrable surface. Other kinds of metasur-
faces exist that lie somewhere between these two extremes. For example, a grating
of parallel conducting wires (a metagrating) behaves like a metafilm to electric fields
perpendicular to the wire axes, but like a metascreen for electric fields parallel to the
wire axes [112]. It is important to note that the individual scatterers constituting a
metafilm (or apertures constituting a metascreen) are not necessarily of zero thickness
(or even small compared to the lattice constants); they may be of arbitrary shape, and
their dimensions are required to be small only in comparison to a wavelength in the
surrounding medium, which is true a fortiori because the lattice constant has been
assumed small compared to a wavelength.
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Figure 1.11 Metafilm examples: (A) array of arbitrary shaped scatterers and (B) array of spherical parti-
cles. Parts (A) and (B) from C.L. Holloway, E.F. Kuester, J.A. Gordon, J. O’Hara, J. Booth, D.R. Smith, An
overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials,
IEEE Antennas Propag. Mag. 54 (2) (April 2012) 10–35, © 2012 IEEE.

Figure 1.12 Metascreen examples: (A) array of arbitrary shaped apertures and (B) array of square aper-
tures. Parts (A) and (B) from C.L. Holloway, E.F. Kuester, Generalized sheet transition conditions (GSTCs)
for a metascreen, IEEE Trans. Antennas Propag. 66 (5) (2018) 2414–2427, © 2018 IEEE.

Figure 1.13 Representing a metafilm as an effective medium with thickness d. From C.L. Holloway,
E.F. Kuester, A. Dienstfrey, Characterizing metasurfaces/metafilms: the connection between surface sus-
ceptibilities and effective material properties, IEEE Antennas Wirel. Propag. Lett. 10 (2011) 1507–1511,
© 2011 IEEE.

Similar to metamaterials, depending on the wavelength-to-period spacing, three
regions of behavior will occur for EM interactions with a metasurface. For a two-
dimensional lattice of scatterers or apertures, region 1 in Fig. 1.3 corresponds to
classical thin-film materials, while region 3 in Fig. 1.3 corresponds to resonances as-
sociated with the periodicity of the scatterers/apertures. The conventional FSS and
PBG [57–59] fall into this third region. On the other hand, when we talk about a meta-
surface, we are referring to an array of scatterers/apertures that lies in region 2 (or
even region 1). Resonances of the surface may be associated with the resonances of
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the scatterers/apertures, but not with the periodicity of the array. Ordinary frequency-
selective surfaces are sometimes operated in this regime, but the distinction between
this type of operation and that of region 3 has not usually been made.

We emphasize that, as for the case of a metamaterial, region 2 in Fig. 1.3 may not
always occur for a metasurface. The scatterers/apertures need to be properly designed,
such that the scatterers’ resonances occur at a frequency well below that where the next
higher-order Floquet–Bloch mode can propagate. For example, if the bulk properties
and the radius of a spherical-particle composite (see [29]) are too small, or if the sizes
or shapes of the scatterers used in the material are not properly chosen, the scatter-
ers’ resonances would be pushed toward the Floquet–Bloch-mode region, and in this
case an effective-medium model would not adequately describe the behavior of the
composite material.

In summary, in regions 1 and 2 of Fig. 1.3 the interaction of an electromagnetic
field with a metasurface is described by effective surface parameters of some kind, to
be discussed below. In region 1 (analogous to the classical mixing theory region for the
case of a metamaterial), the effective surface parameters are not frequency-dependent
(except insofar as the constituent bulk properties have a frequency dependence). In
region 2 (the scatterers’ resonant region), the metasurface still is modeled by effec-
tive surface properties, which now may possess an inherent frequency dependence. In
this region, it is possible to achieve interesting resonant behaviors. In the last region
(region 3 in Fig. 1.3), the electromagnetic field’s interaction with the periodic array
is very involved. We may no longer think of the surface as behaving like an inter-
face with effective surface parameters. When the wavelength approaches the period,
higher-order Floquet–Bloch modes must be considered, and one typically does not
refer to these structures as metasurfaces in this region.

1.4.1 Characterizing a metasurface

Like a metamaterial, the behavior of a metafilm is determined by the electric and
magnetic polarizabilities of its constituent scatterers (or its constituent apertures for
a metascreen). The traditional and most convenient method by which to model meta-
materials is with effective-medium theory. Attempts to use a similar bulk-parameter
analysis for metasurfaces have been less successful (see [113], [33], and [114] for a
detailed discussion on this point). Indeed, some previous metafilm studies have mod-
eled the film as a single-layer metamaterial in which effective bulk material properties
of the metasurface are obtained by forcing the introduction of an arbitrary non-zero
thickness parameter into the analysis. As we will demonstrate, several problems arise
from the physically artificial character of this parameter; the bulk property characteri-
zation of a metasurface is incorrect at a fundamental level. To the extent that classical
algorithms for bulk-parameter extraction give results that depend on sample size, we
would be forced to conclude that some localized effect is occurring near the bound-
ary of the sample [47,100,101,110], analogous to the effect of cutoff modes near the
junction between two different waveguides.

An equivalent-bulk layer representation of a metasurface is shown in Fig. 1.13.
The problem is that the thickness of a metasurface would not be uniquely defined,
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nor would the effective material properties. In [108,109,113,114], it is shown that
the effective surface parameters of a metafilm/metascreen are unique properties of a
metasurface and thus are the most appropriate way to characterize a metasurface. We
will see below that the surface parameters correspond to what we will call effective
surface susceptibilities (defined below as χMS and χES for the magnetic and electric
surface susceptibilities, respectively) for metafilms [33,108], and in addition so-called
surface porosities (defined below as πMS and πES for the magnetic and electric sur-
face porosities, respectively) for metascreens [33,109]. Techniques for retrieving the
surface susceptibilities for a given metasurface based on reflection and transmission
measurements (or simulations) are presented in [33,113,114,117].

To illustrate the issue of representing a metasurface as a material with a bulk ef-
fective permittivity and permeability, we present in Fig. 1.14A retrieved values of εr

(the effective permittivity) for an array of lossy spherical particles (radius a = 10 mm,
period p = 25.59 mm, εp = 2, μp = 900, and tan δ = 0.04) for different values of the
assumed thickness d . These results were obtained by computing numerical values of
the reflection and transmission coefficients for this array of spheres and then using the
modified Nicolson–Ross–Weir (NRW) method [98,99,102] for determining εr of the
slab (see [114] for details). As expected, these results show a functional dependence of
εr on d . Fig. 1.14B shows results for d(εr − 1) for different values of d . We have also
plotted the retrieved values of the surface susceptibility χ

yy
ES (the first superscript “y”

corresponds to the component of the surface susceptibility and the second superscript
“y” corresponds to the polarization of the incident field; see [108] for details) for this
array that appears in (1.18) below (also obtained from using retrieval algorithms and
the numerical values of reflection and transmission coefficients [114]). The retrieved
values for χ

yy
ES are the same as the analytical values given in [113]. The results shown

in Fig. 1.14B illustrate that, for sufficiently low frequencies, d(εr − 1) is independent
of d and identical to χ

yy
ES . Although the connection between surface susceptibilities

and the effective bulk properties of a slab was not discussed explicitly in [27], Smith
et al. [27] do allude to the fact that the product of the slab thickness and the effective
material properties of the slab should be constant.

Additional examples of the surface susceptibilities for two different metafilm struc-
tures are shown in Fig. 1.15. One is an array of lossy spherical particles and the other
is an array of thin metallic scatterers (Fig. 1.15D). As we will see below, a metascreen
requires both surface susceptibilities and surface porosities to fully characterize the
metascreen. Fig. 1.16 shows both surface susceptibilities and surface porosities for a
metascreen composed of an array of square apertures.

When all is said and done, we would argue that a model for a metafilm that uses
uniquely specified quantities (i.e., χMS or χES as defined below) is more natural
than an approach that involves two arbitrary quantities (d and εr ). Likewise, for a
metascreen we should use both surface susceptibilities and surface porosities as de-
fined below [33,109]. Even though it has been shown that the electrical and magnetic
surface susceptibilities are the most appropriate manner to characterize metafilms,
some researchers continue to characterize them in terms of bulk effective material
properties. If one insists on characterizing a metasurface as a thin material slab with
bulk effective material properties and a thickness d , the only meaningful (and unique)
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Figure 1.14 Results for an array of lossy spheres: (A) retrieved εr and (B) d(εr − 1) and χ
yy
ES

. From
C.L. Holloway, E.F. Kuester, A. Dienstfrey, Characterizing metasurfaces/metafilms: the connection between
surface susceptibilities and effective material properties, IEEE Antennas Wirel. Propag. Lett. 10 (2011)
1507–1511, © 2011 IEEE.

parameters will be products such as d(εr − 1) and d(μr − 1), if the slab is centered
at the plane containing the metafilm. A retrieval approach that gives unique quantities
like χMS and χES is more natural than one that merely gives products of otherwise
undetermined quantities [33,113,114,117].

In contrast to the effective-medium description used for a metamaterial, bound-
ary conditions incorporating the effective surface parameters (surface susceptibilities
and surface porosities) of the metasurface are the best way to characterize it. These
boundary conditions are called generalized sheet-transition conditions (GSTCs) [33,
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Figure 1.15 Surface susceptibilities for a metafilm composed of (A) χ
yy
ES

for spherical particles
(a = 10 mm, p = 25.59 mm, εr = 2, μr = 900, and tan δ = 0.04), (B) χzz

ES
for the same array as in (A),

(C) χzz
ES

for an array of thin metallic scatterers shown in (D), and (D) thin metallic scatterer for electrical
surface susceptibility (t = 3 µm, A = 40 µm, p = 54 µm, and l = 12 µm). Parts (A), (B), (C), (D) from
C.L. Holloway, A. Dienstfrey, E.F. Kuester, J.F. O’Hara, A.K. Azad, A.J. Taylor, A discussion on the inter-
pretation and characterization of metafilms-metasurfaces: the two-dimensional equivalent of metamaterials,
Metamaterials 3 (2009) 100–112.

108–110]. The coefficients appearing in the GSTCs for any given metasurface are all
that are required to model its macroscopic interaction with an electromagnetic field.
The GSTCs allow this surface distribution of scatterers to be replaced with a boundary
condition that is applied across an infinitely thin equivalent surface (hence the name
metasurface, metafilm, or metascreen), as indicated in Fig. 1.17. The size, shape, and
spacing of the scatterers are incorporated into this boundary condition through the
polarizability densities of the scatterers on the interface. These surface polarizability
densities are related to the effective surface susceptibilities and surface porosities.

The GSTCs for a metasurface take on different forms for either a metafilm or a
metascreen. For a metafilm the GSTCs apply to jumps in both the tangential compo-
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Figure 1.16 Surface susceptibilities and surface porosities for a metascreen composed of an array of
square apertures of length l: (A) array of square apertures (from C.L. Holloway, E.F. Kuester, General-
ized sheet transition conditions (GSTCs) for a metascreen, IEEE Trans. Antennas Propag. 66 (5) (2018)
2414–2427, © 2018 IEEE), (B) χzz

MS
and πzz

MS
for square apertures (h = 5 mm and p = 100 mm), and

(C) χ
yy
ES

and π
yy
ES

for circular apertures (h = 5 mm and p = 100 mm).

nents of the electric (E) and magnetic (H) fields across the metafilm [see Figs. 1.17A
and 1.17C] and take on the following form [108,110,113]:

ay ×
[
EA − EB

]
y=0

= −jωμ0

(↔
χMS · H̃av

)
t
− ay × ∇t

(
ay · ↔

χES · Ẽav

)
(1.18)

and

ay ×
[
HA − HB

]
y=0

= jωε0

(↔
χES · Ẽav

)
t
− ay × ∇t

(
ay · ↔

χMS · H̃av

)
, (1.19)

where the average fields are defined by

Eav = 1

2

(
EA + EB

)
t
+ 1

2
ε0 ay

(
DA

y + DB
y

)
, (1.20)
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Figure 1.17 Reference plane to allow GSTCs: (A) a metafilm with arbitrarily shaped scatterers,
(B) a metascreen with arbitrarily shaped apertures, (C) reference plane for a metafilm at which the GSTCs
are applied, (D) reference plane for a metascreen at which the GSTCs are applied, (E) a metagrating with
arbitrary shaped coated wire grating, and (F) reference plane for a metagrating at which the GSTCs are
applied.

and similarly for Hav, Dav, and Bav. The surface susceptibility dyadics are defined as

↔
χES = χxx

ESaxax + χ
xy
ESaxay + χxz

ESaxaz

+ χ
yx
ESayax + χ

yy
ESayay + χ

yz
ESayaz

+ χzx
ESaxax + χ

zy
ESazay + χzz

ESazaz , (1.21)

↔
χMS = χxx

MSaxax + χ
xy
MSaxay + χxz

MSaxaz

+ χ
yx
MSayax + χ

yy
MSayay + χ

yz
MSayaz

+ χzx
MSaxax + χ

zy
MSazay + χzz

MSazaz . (1.22)

The surface susceptibilities have units of length.
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For a metascreen, a different set of GSTCs is needed. For a metascreen, a boundary
condition for the magnetic field is not usable a priori, because it would involve surface
currents that are not yet known, much like what occurs for a wire grating [112]. The
required GSTCs for a metascreen should constrain only tangential E [see Figs. 1.17B
and 1.17D], and can be expressed as conditions on the jump of the tangential E-field
and on the sum (twice the average) of the tangential E-fields [33,109]:

ay ×
[
EA(ro) − EB(r0)

]
= − ax jωμ0

[
χAxx

MS HA
x (ro) + χBxx

MS HB
x (ro)

+χAxz
MS HA

z (ro) + χBxz
MS HB

z (ro)
]

− az jωμ0

[
χAzx

MS HA
x (ro) + χBzx

MS HB
x (ro)

+χAzz
MS HA

z (ro) + χBzz
MS HB

z (ro)
]

− ay ×
[
χ

Ayy
ES ∇tE

A
y (ro) + χ

Byy
ES ∇tE

B
y (ro)

]
(1.23)

and

ay ×
[
EA(ro) + EB(r0)

]
= − ax jωμ0

[
πAxx

MS HA
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]
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(1.24)

As before, χES and χMS are interpreted as effective electric and magnetic surface sus-
ceptibilities, respectively, while πES and πMS are interpreted as effective electric and
magnetic surface porosities of the metascreen [109]. Like the surface susceptibilities,
the surface porosities have units of length.

A metagrating [112] behaves like a metafilm to electric fields perpendicular to
the wire axes, but like a metascreen for electric fields parallel to the wire axes [see
Figs. 1.17E and 1.17F]. Metagratings require GSTCs that are a combination of those
needed for a metafilm and a metascreen, which are given by the following:

ay ×
[
EA(ro) − EB(ro)

]
= − jωμ0 χzz

MSHz,av(ro)az − jωχ
xy
MSBy,av(ro)ax

− jω
[
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MS BA
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MS BB
x (ro)

]
ax

− ay × [
χ

yx
ES ∇Ex,av(ro)

]
− ay ×

[
χ

Ayy
ES ∇EA

y (ro) + χ
Byy
ES ∇EB

y (ro)
]

,

(1.25)
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HA
z (ro) − HB

z (ro) = jωε0 χxx
ES Ex,av(ro)

+ jωε0

[
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Axy
ES EA
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Bxy
ES EB
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− 1
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, (1.26)

and

EA
z (ro) + EB

z (ro) = − jωπ
xy
MSBy,av(ro)

− jω
[
πAxx

MS BA
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MS BB
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− π

Ayy
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y (ro)

∂z

− π
Byy
ES

∂EB
y (ro)

∂z
. (1.27)

The coefficients χES and χMS are effective electric and magnetic surface susceptibili-
ties of the metagrating, while πES and πMS are effective electric and magnetic surface
porosities of the metagrating; both have units of length.

Calculating the surface susceptibilities and surface porosities can be difficult for
generally-shaped inclusions or apertures. However, the GSTCs can be used to retrieve
these surface parameters from measured or calculated plane-wave reflection and trans-
mission coefficients, as done in [33,113,114], and [117–119]. These GSTCs, along
with the surface parameters, are also convenient to use in the analysis of various ap-
plications of the EM interaction of metasurfaces with EM fields [47,111,115–123].

The GSTCs can also be cast in the form of impedance-type boundary conditions
[13,160–163]. For plane-wave fields, whose variation parallel to a metafilm is of the
form

e−jk·rt , (1.28)

where

k = kxax + kyay and rt = xax + yay, (1.29)

we can use Maxwell’s equations to write Eqs. (1.18) and (1.19) as

ay ×
[
EA − EB

]
y=0

= − ↔
ZMS · Ht,av , (1.30)

ay ×
[
HA − HB

]
y=0

= ↔
YES · Et,av . (1.31)
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Here, the spatially dispersive (k-dependent) surface transfer admittance and transfer
impedance are given by

↔
YES = jω

↔
χES + j

↔
χMS

ωμ
(az × k)(az × k) , (1.32)

↔
ZMS = jω

↔
χMS + j

↔
χES

ωε
(az × k)(az × k) . (1.33)

Boundary conditions of this form can also be interpreted as lumped elements in equiv-
alent transmission-line circuits [161].

1.5 Isolated scatterers and one-dimensional array

So far we have discussed three-dimensional metamaterials and two-dimensional meta-
surfaces. What about one-dimensional metastructures? The two-dimensional meta-
material (i.e., a metasurface) concept can be extended even further to the concept of
using only a linear unit cell rather than a surface cell, that is, using only a single sub-
wavelength resonant structure for some desired effect or behavior. In fact, we have
already begun to see a few applications of this concept. One in particular is the use of
a unit cell in the design of electrically small antennas. In antenna applications, the unit
cell acts like a parasitic element to the radiating element of the antenna and serves as
a means to match the electrically small radiating element to both (1) the feeding trans-
mission line and (2) free space. Such designs have been shown to achieve efficient
electrically small antennas [164–171]. Nanoparticles have also been used for tuning
“so-called” optical nanoantennas [172]. An additional example is the use of a one-
dimensional unit cell as a tuning structure for planar transmission lines [173]. Another
emerging area of application is the use of one-dimensional chains of nanoparticles as
waveguides supporting surface waves, of which examples can be found in [174–180].

1.6 Summary

The recent development of various engineered materials (3-D metamaterials, 2-D
metasurfaces, single arrays and single particles) is bringing us closer to realizing the
exciting predictions (exotic material behavior) made over one hundred years ago by
the work of Lamb, Schuster, and Pocklington [60–62]. As we saw from the many ref-
erences cited in this chapter, in recent years, many authors have studied the properties
and potential applications of these exotic materials. While there is still much work
needed in the understanding, analysis, design, and fabrication of these engineered
materials, the potential of these materials has forever changed the landscape of RF,
microwaves, optics and photonics for the future. This book intends to address some
of the potential applications of these engineered materials. Including this chapter, the
book contains a total of 9 chapters covering different aspects of dielectric metastruc-
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tures (i.e., metamaterials, metasurfaces, isolated scatterers, and one-dimensional linear
arrays).
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